Customized Authoring
with Extensible Markup

XML 1.0

a Tutorial for Emilé 1.0
by Media Design ineProgress

© 1995-99
Media Design ineProgress. All rights reserved.

This publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or
by any means, mechanical, electronic, photocop-
ing, recording, or otherwise, provided that the
same proprietary and copyright notices must be
affixed to any copies as were affixed to the origi-
nal. This exception does not allow additional
copies to be sold to others. This publication and
the software described in it may not be licensed
to others. The specific and complete license
agreement is available in the README file in the
same folder as the Software.

Interaction, Emilé, XPublish, Cascade, Web-
Slides, Extensible Markup and ineProgress are
trademarks of Media Design ineProgress.

Apple is a trademark of Apple computer, Inc.,
registered in the United States and elsewhere.
XML is a trademark of MIT and the W3C. MCL
is a trademark of Digitool, Inc. WebStar is a
trademark of StarNine. Web Server 4D is a
trademark of MDG Inc. Quid Pro Quo is a trade-
mark of Chris Hawk. MacHTTP is a trademark
of Chuck Shotton. NetPresenz is a trademark of
Peter Lewis. Tenon, WebTen and the Tenon logo
are trademarks of Tenon Intersystems. Other
product names and company names mentioned
in this publication may be trademarks or regis-
tered trademarks of their respective companies
and are hereby acknowledged as such

LIMITED WARRANTY:

MEDIA DESIGN INePROGRESS MAKES NO
WARRANTY OR REPRESENTATION, EITHER
EXPRESS OR IMPLIED, WITH RESPECT TO
THIS MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
MANUAL IS PROVIDED “AS IS”, AND YOU,
THE PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY. IN NO EVENT WILL MEDIA
DESIGN IN=PROGRESS OR TERJE NORDER-
HAUG BE LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTIAL, OR CONSEQUEN-
TIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS MAN-
UAL, even if advised about the possibility of
such damage.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Media Design
ineProgress dealer, agent or employee is autho-
rized to make any modification, extension, or
addition to this warranty. Some states do not
allow the exclusion or limitation of implied war-
ranties or liability of incidential or consequential
damages, so the above limitations might not
apply to you. This warranty gives you specific
legal rights, and you might also have other rights
which vary from state to state.

This edition was completed April 4, 1999.

Authoring Extensible HTML

Lesson 1: Authoring Extensible HTML

The W3C has announced that the next version of HTML will be based on XML, Extensi-
ble HTML allows use of features from XML in HTML documents.

XML and Extensible HTML is supported by recent web browsers?. Emilé can save an
XML or Extensible HTML document as standard HTML that can be served to older
browsers.

However, XML is typically not served directly to the web browsers, but used as author-
ing format for more efficient web publishing. Advanced XML markup processors such

as Interaction® and XPublish* generates standard HTML pages based on XML docu-
ments and style sheets. This gives you the flexibility of extensible markup while keeping
your sites accessible for all web browsers.

This lesson introduces how to create new pages and author documents with Extensible
HTML.

1. Choose New from the File menu of Emilé.
2. From the Markup menu, select Document Types -> Extensible HTML -> HTML 4.0

Emilé inserts a document type declaration at the top of the file. This tells Emilé that
the document type to use is Extensible HTML 4.0. Emilé will tailor its dialogs accord-
ingly, providing menus and dialogs for efficient authoring with the specified docu-
ment type.

3. Paste or type in the following text below the document type declaration:

Memo
Extensible Markup

From: Media Design in*progress
To: Webmasters
XML makes webmasters more efficient and flexible.

4. Select the text “Extensible Markup”, then choose H1 from the Element submenu of
the Markup menu. Click the Insert button of the resulting dialog.

The text is made into an H1 element, surrounded by an <H1> start tag and a </H1>
end tag.

5. Select the next line of text. Mark it up as a paragraph by choosing P from the Ele-
ment submenu. Repeat for the two other lines in the document.

The three lines are now marked up as paragraphs. Continue until you have the fol-
lowing markup:

1. See http://www.w3c.org/markup for more about the next generation of HTML, Extensible HTML.
2. E.g. Internet Explorer 5.0 and later.

3. See http://interaction.in-progress.com for more about the Interaction web server companion.

4. See http://lwww.in-progress.com for more about the XPublish website publishing system.

Authoring Extensible HTML

<HTML>
<HEAD><TITLE>Memo</TITLE></HEAD>
<BODY>
<H1>Extensible Markup</H1>
<P>From: Media Design in*Progress</P>
<P>To: Webmasters</P>
<P>XML makes webmasters more efficient and flexible.</P>
</BODY>
</HTML>

This example is both correct HTML and well-formed XML. Note how each start-tag
has a corresponding end-tag. XML requires that all start tags have a correspondingly
nested end-tag to specify when the element ends. In the example above, the <P> start-
tags starts each paragraph, and the</P> end-tags ends a paragraph. In contrast,
HTML often allow you to skip the end tag and in some cases also the start tag.

6. Save the document as “memol” in XML format.

ABOUT THE MARKUP EDITOR

Emilé is based on a Macintosh clone of the powerful and widely used Emacs text edi-
tor.The editor provides numerous shortcuts that are the same as its UNIX/Windows
counterpart for productive text editing. At the same time, Emilé has Macintosh ease of
use and is specialized for markup, with menu driven editing tools, pane splitting, con-
textual menus, drag & drop, and more.

Adding Custom Elements

Lesson 2: Adding Custom Elements

Extensible Markup Language (XML) allows you to use custom tags to better markup
your content. This lesson introduces how to use custom elements in a document.

In this lesson you will type the markup by hand. Lesson 4: Declaring Custom Elements
will teach you how to customize Emilé to provide buttons and dialogs for the custom
elements used in this lesson.

1. Open the “memol” document from the File menu of Emilé.
2. Remove all text before <BODY>.

This is optional. Keeping the HTML and HEAD element conforms with Extensible
HTML, while removing these elements makes for clean XML.

Remove the </[HTML> at the end.

4. Replace the <BODY> start-tag with <MEMO> and the </BODY> end-tag with
</MEMO>.

5. Replace the <H1> start-tag with <SUBJECT> and the </H1> end-tag with </SUB-
JECT>.

6. Make the second paragraph into a FROM element by substituting the <P> with
<FROM?> and </P> with </[FROM>,

7. Make the third paragraph into a TO element by substituting the <P> with <TO>
and </P> with </TO>.

You should now have the following content:

<MEMO>
<SUBJECT>Extensible Markup</SUBJECT>
<FROM>Media Design in*progress</FROM>
<TO>Webmasters</TO>

<P>XML makes Webmasters; more efficient and flexible.</P>
</MEMO>

The markup above is the same memo as in Lesson 1: Authoring Extensible HTML,
but with custom XML tags. The essence of XML is the ability to use custom tags to
better describe the structure and meaning of your documents. Custom element types
facilitates advanced processing and more efficient and flexible web publishing.

8. Save the document.

9. Generate an HTML page from the document by choosing Save As from the File
menu, selecting HTML for Format in the dialog and adding a *“.html” suffix to the
file name.

Emilé automatically adds HTML and HEAD elements if necessary, and converts the
custom elements into standard HTML elements. The generated HTML elements will
have a CLASS attribute, so that the look & feel of the document can be controlled
with a CSS style sheet.

Adding Custom Elements

ABOUT XML AND EXTENSIBLE HTML

XML differs from HTML by describing the content and structure rather than the presen-
tation. In descriptive markup, tags are used to declare the role of the various parts of the
document, leaving the presentation to be designed in style sheets.

Extensible HTML is HTML that follows the syntax of XML, allowing the document to be
extended with XML constructs and custom elements. If you already know HTML, there
are only a few things you need to know in order to markup any content with Extensible
HTML and XML:

XML Markup describes the document structure, leaving the design of the presenta-
tion to style sheets.

You can use custom elements to optimally describe the structure of your documents.

An element always starts with a mandatory start-tag, e.g. <PARAGRAPHxfollowed by
content, ending with a corresponding mandatory end-tag, e.g. </PARAGRAPH>
Elements can be nested by enclosing other elements within an element.

Enclosed elements must be properly nested (i.e. start-tags should close with match-
ing end-tags).

Custom elements should be labeled using a noun that describes the role of content.
XML is case sensitive (i.e. it makes a difference whether an element identifier or
attribute name is upper case or lower case). Use upper case in element identifiers and
attribute names for backward compatibility with HTML.

The start-tag of an element can contain attributes with characteristic qualities of the
element. You can use custom attributes. Attributes should be nouns or adjectives that
describe significant characteristics.

An attribute has a name and a value with an equal sign in between. Attribute values

are always quoted. Here is an example of an element with an attribute for language:
<ABSTRACT lang="en">This is an abstract in English</ABSTRACT>

Elements that doesn’t have any content are marked up as an Empty Element, with
the same syntax as a start-tag but ending with /> as in

This is almost all you need to know in order to author with extensible markup. XML has
many features to formally declare your own markup constructs, but you don’t have to
use these when authoring documents with XML.

Declaring Internal Entities

Lesson 3: Declaring Internal Entities

An Entity is a unit of information and provides replacement text for an Entity Reference.
An Entity Declaration advises about the existence of an entity, and either provides the
replacement text or tells where the content can be found.

This lesson introduces how to declare Internal Entities that can be used in a specific doc-
ument. Declaring such entities has several purposes, including:

Customize the Entity Catalog palette with frequently used entities.
Save typing by declaring internal entities for repeated content.

Maintain frequently modified phrases as entities in the top of the document for easier
updating of the content without the potential complications of search/replace.

Specialize entities of the specified document type.

Here is how to define an internal entity called webmaster:

1.
2.

Open the memol document from previous lessons using Open from the File menu.

Open the Declare Entity
dialog from the Markup
menu.

[0 =———Declare Entity =—"—=—=~H

NMame: |webmaster] Parameter

The Declare Entity dialog
is used to declare a new
entity or change an exist-|| ® Internal lalue
ing entity declaration. Terje Morderhaug
Selected text in a docu-
ment will automatically
become the default text

for the entity.
Type in lowercase “web-|| r) Evternal Specification
master” in the field for
Name Public 1D:
The entity name is used system ID:
to reference the entity. .
Motation:

Change the Internal
Value to your name.

The internal value is |_Cancel |||I'IFrEl't|

replacement text for the
entity. The replacement
text will substitute any reference to the entity in the document.

Click the Insert button to add the entity declaration in the document

Emilé will automatically place the entity declaration in a document type declaration
in the beginning of the document. If the document doesn’t have a document type

10.

Declaring Internal Entities

declaration, one will be created automatically before any other declarations are
added.

The entity declaration should now appear similar to this:

<IDOCTYPE MEMO [
<IENTITY webmaster “Terje Norderhaug”>
1>
Note that the document type declaration may vary depending on the specified docu-
ment type.

Open the Entity Catalog from the Palettes of the Win- O Entity Cataleg B
dows menu D.urehmaEter —
The Entity Catalog lists Entities that are specific for the

document.

Insert the entity reference &webmaster; in place of the =
two instances of the word “webmasters” in the docu- “

ment.

Select the word “webmasters” in the document, and click on the item labeled Web-
master in the Entity Catalogl.

Save the Document
Saving the document makes Emilé aware of the changes.
Generate an HTML page by using Save As from the File menu.

Type in a filename with a “.html” suffix in the Save As dialog, and select the radio
button labeled HTML.

Open the location in a web browser.

All occurrences of the entity reference &webmaster; will have been replaced with the
entity value.

1. You can alternatively select the entity in the Entities submenu of the Markup menu.

Declaring Custom Elements

Lesson 4: Declaring Custom Elements

Recall from Lesson 2: Adding Custom Elements that elements are used to describe the
role of various parts of the document. This lesson demonstrates how to declare custom
element types. Formally declaring element types has several advantages, including:

Emilé can provide buttons and menus to insert custom tags and elements in the doc-
uments, saving the author from repeated typing.

Emilé can provide dialogs to define the various attributes of an element, making
authoring more efficient reducing the likelihood for mistakes.

Emilé can provide on-line help advising the author about which attributes can be
used in an element, as well as the structure of the content of the element.

The document can be validated, warning about inconsistencies such as paragraphs
within an header and other constructs that don’t make sense.

In Lesson 2: Adding Custom Elements we introduced several custom elements to mark
up the various parts of a memo. Now is time to formally define the elements:

1.
2.

Open the memol document from the File menu.
Open the Declare Element dialog from the Markup menu

The Declare Element O
dialog facilitates the
declaration of custom
elements.

Each element has a Content
name and a content

model that specifies the
valid structure of the @ Model: |Any
content of the element.

Type the noun “SUB- > Show Explanation (_Cancel | [_Insert |

JECT” as the name for

Declare Element Type =—"~—H

Mame: [SUBJECT

) Empty Element

the element
The name is the same as in the tag <SUBJECT>.
Check the radio button for Model, and type in ANY as content model.

ANY declares that the element can contain any other elements or content. XML
allows you to specify which elements can be contained in an element so that Emilé
can validate that the markup is correct.

Click the Insert button to complete the dialog.

The Element Declaration is inserted in the Document Type Declaration of the docu-
ment, and should appear like this:

Declaring Custom Elements

<I[ELEMENT SUBJECT ANY>

To modify the element declaration, place the cursor in the declaration and select
Inspect from the Markup menu. This will open the declaration in the same dialog
that you originally used to declare the element.

6. Save the document.

Saving the document updates Emilé about the new element [F7 Taq Catalog - 5
type.

7. Open the Tag Catalog from the Palettes of the Windows
menu.

| Doctype il I

Ent. | Elt. | Att.. |
Com | CO |Fl| ==
SUEJECT |

The new element type is listed in the Tag Catalog. Click the
triangle in the bottom right of the catalog to view the button
that inserts the element in the document.

8. Repeat for the other elements of the memao.
The other elements are MEMO, TO, FROM and P.

ABOUT CUSTOM ELEMENTS

XML Elements should have names that describe content rather than presentation. This
allows the presentation to be maintained in a separate style sheet, opens for advanced
processing, and let the content be reused and processed by a wide range of software.

As a rule of thumb, use nouns as the name of your custom elements. Good names
includes HINT, PERSON, and HEADER. Avoid names that represent colors, sizes, fonts
or other presentational aspects. Also, avoid using verbs as element names, as mixing
instructions or commands with markup makes your content less flexible for reuse.

10

Declaring Attributes

Lesson 5: Declaring Attributes

Attributes are characteristic qualities of an element. The following steps will declare an
attribute “lang” that can be used to specify the language of a memo:

1. Select “Declare Attributes” from the Markup menu

A dialog opens with - =
attributes of an element.
Element Type: |MEMOD |»
2. Select MEMO as the
Element Type for the -Attribute Definitions
attributes Mew... |~| Type:|[CDATA v
3. Click New on the list of lang
Attribute definitions, @ Implied
and give the new _
attribute the name () Required
“lang”. i) Default Palue
The attribute definition] Fided
list has an item for each | |
attribute that can be [+ |
used in an element.See
XML documentation for Cancel m
further details about []

how to specify the
attribute type and value.

4. Click Insert to complete the attribute declaration

An Attribute List Declaration is now inserted in the Document Type Declaration of
the document. The document type declaration subset should now be as follows:

<IDOCTYPE MEMO |
<IENTITY webmaster "Terje Norderhaug">
<IELEMENT MEMO ANY>
<IELEMENT SUBJECT ANY>
<IELEMENT TO ANY>
<IELEMENT FROM ANY>
<IELEMENT P ANY>
<IATTLIST MEMO
lang CDATA #IMPLIED>
1>

The Attribute List Declaration can be modified by placing the cursor in the markup
and select Inspect from the Markup menu. You can also change the declaration
directly as long as the document is saved afterwards.

11

Declaring Attributes

5. Place the cursor in the <MEMO> start-tag of the MEMO element, and select
Inspect from the Markup menu

log to configure the O MEMO (Element) ———-8H
attributes of the ele- lang l |
ment. There will be a

field for language. I Content Model | Cancel |

Disclose the Content
Model for information
about valid content for the element. The explanation is created based on your custom
content model.

6. Type in alanguage in the field for “lang”.
7. Click Insert to add the changes to the start tag of the element.

Lesson 6: Defining a Document Type tells how you can use the same method to declare
elements for multiple documents that uses the same markup.

12

Defining a Document Type

Lesson 6: Defining a Document Type

Documents often have a similar structure. XML allows you to define document types
that contain the elements and rules for describing the structure of a document. HTML is
an example of a general document type with many elements and entities. Using XML,
you can define document types that are specialized for your content.

The lesson is based on Lesson 3: Declaring Internal Entities, Lesson 4: Declaring Cus-
tom Elements and Lesson 5: Declaring Attributes. In those lessons you practiced how
to declare document specific entities and elements. The same declarations can be used to
define a document type, so that you don’t have to repeat the same declarations in multi-
ple documents.

In this lesson, you will create a simple Document Type Definition (DTD):
1. Choose “New” from the Document Types submenu of the Markup menu.
Emilé displays a dialog to type in the name of a new document type.

2. Type in “memo” as the name of your custom document type, and click the OK but-
ton of the dialog.

Emilé will create a new DTD file in its Document Types folder, and open it in the edi-
tor.

Place the cursor at the end of the DTD file.
4. Select Declare Element from the Markup menu.

5. Type MEMO as the name of the element, type in (SUBJECT, FROM, TO, P¥*) for con-
tent model, and click the Insert button

An Element Declaration for HTML is now inserted in the cursor position of the Doc-
ument Type Definition.

The content model declares what is valid content for elements of the type. The con-
tent model above declares that a MEMO should contain a sequence of the elements
SUBIJECT, TO, and FROM, followed by any number of paragraphs.

The star **’ after the P means that a paragraph element can occur zero or more times.
A plus ‘+’ in the same position would signify that a paragraph can occur once or
more. A question-mark ‘?” would make the element optional.

The different items in the content model for MEMO are separated by commas, which
signifies that they should occur sequentially. They can alternatively be separated by a
bar (*]’) which signifies that the items can occur in any order.

6. Select Declare Element from the Markup menu

7. Type SUBJECT as the name of the element, type in (#PCDATA) as content model,
and click the Insert button

The #PCDATA represents character data. Character data is regular text without any
markup. Thus, the content model for SUBJECT states that it can only contain plain
text and no markup.

13

8.

10.

Defining a Document Type

Repeat to declare the FROM and TO elements to have (#PCDATA) as content
model

Declare an element P with ANY as content model
The content model ANY means that the element can contain any element or data.
The DTD should now be as follows:

<?xml version="1.0"?>

<IELEMENT MEMO (SUBJECT, FROM, TO, P*)>
<IELEMENT SUBJECT (#PCDATA)>
<IELEMENT FROM (#PCDATA)>

<IELEMENT TO (#PCDATA)>

<IELEMENT P ANY>

To modify any of the declarations, place the cursor in the markup and select Inspect
from the Markup dialog.

Close the editor, saving the Document Type Definition

Saving the DTD will make Emilé aware of the changes. The name of the document
type should now be listed in the Document Types submenu of the markup menu.

USING THE MEMO DOCUMENT TYPE
You are now ready to make use of the memo document type.

11.
12.

13.

14.

15.

Create a new document using New from the File menu of Emilé.

Declare the document type by choosing “memo” from the Document Types sub-
menu of the markup menu.

The prolog of the document now looks as follows:

<?xml version="1.0"?>
<IDOCTYPE name SYSTEM "memo">

Open the Tag Catalog from the Palettes of the Windows O Tag Catalog 5
menu (if not already shown)

| Doctype b |
Ent.. | EIt. | Atf. |
Com | CD |FPI| ==

The tag catalog can also be opened using the <> button in the
upper right corner of the editor.

Click the small triangle in the Tag Catalog to disclose the Fram |
element buttons for the document M

e |
The Tag Catalog lists the same elements as you included in F |
the document type definition. Subject |
Place the cursor on the first line after the Document Type To |

Declaration. Click the MEMO button of the Tag Catalog to
insert the root element. Use the other buttons to build a memo like the one in Les-
son 2: Adding Custom Elements.

14

	Lesson 1: Authoring Extensible HTML
	1. Choose New from the File menu of Emilé.
	2. From the Markup menu, select Document Types -> Extensible HTML -> HTML 4.0
	3. Paste or type in the following text below the document type declaration:
	4. Select the text “Extensible Markup”, then choose H1 from the Element submenu of the Markup men...
	5. Select the next line of text. Mark it up as a paragraph by choosing P from the Element submenu...
	6. Save the document as “memo1” in XML format.
	About the Markup Editor

	Lesson 2: Adding Custom Elements
	1. Open the “memo1” document from the File menu of Emilé.
	2. Remove all text before <BODY>.
	3. Remove the </HTML> at the end.
	4. Replace the <BODY> start-tag with <MEMO> and the </BODY> end-tag with </MEMO>.
	5. Replace the <H1> start-tag with <SUBJECT> and the </H1> end-tag with </SUBJECT>.
	6. Make the second paragraph into a FROM element by substituting the <P> with <FROM> and </P> wit...
	7. Make the third paragraph into a TO element by substituting the <P> with <TO> and </P> with </TO>.
	8. Save the document.
	9. Generate an HTML page from the document by choosing Save As from the File menu, selecting HTML...
	About XML and Extensible HTML

	Lesson 3: Declaring Internal Entities
	1. Open the memo1 document from previous lessons using Open from the File menu.
	2. Open the Declare Entity dialog from the Markup menu.
	3. Type in lowercase “webmaster” in the field for Name
	4. Change the Internal Value to your name.
	5. Click the Insert button to add the entity declaration in the document
	6. Open the Entity Catalog from the Palettes of the Windows menu
	7. Insert the entity reference &webmaster; in place of the two instances of the word “webmasters”...
	8. Save the Document
	9. Generate an HTML page by using Save As from the File menu.
	10. Open the location in a web browser.

	Lesson 4: Declaring Custom Elements
	1. Open the memo1 document from the File menu.
	2. Open the Declare Element dialog from the Markup menu
	3. Type the noun “SUBJECT” as the name for the element
	4. Check the radio button for Model, and type in ANY as content model.
	5. Click the Insert button to complete the dialog.
	6. Save the document.
	7. Open the Tag Catalog from the Palettes of the Windows menu.
	8. Repeat for the other elements of the memo.
	About Custom Elements

	Lesson 5: Declaring Attributes
	1. Select “Declare Attributes” from the Markup menu
	2. Select MEMO as the Element Type for the attributes
	3. Click New on the list of Attribute definitions, and give the new attribute the name “lang”.
	4. Click Insert to complete the attribute declaration
	5. Place the cursor in the <MEMO> start-tag of the MEMO element, and select Inspect from the Mark...
	6. Type in a language in the field for “lang”.
	7. Click Insert to add the changes to the start tag of the element.

	Lesson 6: Defining a Document Type
	1. Choose “New” from the Document Types submenu of the Markup menu.
	2. Type in “memo” as the name of your custom document type, and click the OK button of the dialog.
	3. Place the cursor at the end of the DTD file.
	4. Select Declare Element from the Markup menu.
	5. Type MEMO as the name of the element, type in (SUBJECT, FROM, TO, P*) for content model, and c...
	6. Select Declare Element from the Markup menu
	7. Type SUBJECT as the name of the element, type in (#PCDATA) as content model, and click the Ins...
	8. Repeat to declare the FROM and TO elements to have (#PCDATA) as content model
	9. Declare an element P with ANY as content model
	10. Close the editor, saving the Document Type Definition
	Using the MEMO Document Type
	11. Create a new document using New from the File menu of Emilé.
	12. Declare the document type by choosing “memo” from the Document Types submenu of the markup menu.
	13. Open the Tag Catalog from the Palettes of the Windows menu (if not already shown)
	14. Click the small triangle in the Tag Catalog to disclose the element buttons for the document
	15. Place the cursor on the first line after the Document Type Declaration. Click the MEMO button...

